

Mark Scheme (Results)

Summer 2024

Pearson Edexcel GCE

AS Mathematics (8MA0)

Paper 21 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024

Question Paper Log P75680A

Publications Code 8MA0_21_2406_MS*

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 30.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the most

complete.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AO
1		B1	2.2a
		B1ft	1.1b
		B1	2.2a
		B1ft	1.1b
	1.6 1.7 1.8 1.9 2.0 2.1		
	Heights		
		(4 ma	rks)
	Notes 1st B1 for a box with 2 whiskers (one at each end) with median at 1.85 and lower quartile at 1.81		
	do not allow median = upper quartile [=1.85]		
	2^{nd} B1ft for $\underline{1.92}$ plotted as the upper quartile (must be right hand en $\underline{\text{or}}$ for plotting an IQR = 0.11, i.e. their upper quartile at "1.81"		
	3 rd B1 for lower whisker ending at <u>1.72</u> must be attached to whisker		
	4 th B1ft for upper whisker ending <u>2.0</u> must be attached to whisker <u>or</u> for plotting a range of 0.28 i.e. their upper whisker ending for ft condone maximum and/or minimum plotted as outliers	•	+ 0.28

Qu 2	Scheme	Marks	AO
(a)	East		
(b)	Since: The prevailing winds in Camborne/UK are from the South or West or North or East since lowest frequency or Camborne is in South/West (and so wind is less likely to come from East)	B1	2.2b
` _		(1)	
	e.g. 'wind direction should be in the range 0 to 360'	M1	2.4/1.2
	e.g. 'so he should <u>ignore/remove</u> the value'	A1	1.1b
		(2)	
		(3 ma	arks)
	Notes		
(a)	B1 for East and a suitable reason based on: general winds in UK / Camborne allow East and Camborne indicated on a sketch of map contradictory comment e.g. 'Camborne is in the North, so wind is less likely to come from the East' is B0		
(b)	M1 for giving a reason which correctly uses 360 for reason allow e.g. 'only goes up to 360' also condone '10 to 360' this mark may be implied by e.g. 'subtract 720'		
	A1 for stating appropriate action to take provided M1 clearly scored ignore o.e. or remove o.e. allow e.g. 'reject', 'discard', etc. must be suggesting what to do with the value, not just stating that it is	s an anoma	lv

Question	Scheme	Mark	AO
3(a)	[From 3~4 bar and freq in table deduce] fd scale of 1cm = 5	M1	2.2a
	$2 \sim 3$ has freq = 25 and $4 \sim 6$ has freq = $112 - (64 + 13 + 3 + "25") = 7$	A1	1.1b
(1-)	F 1 1 4 6 61 11 "7" 2.5 11	(2)	2.2-
(b)	For a bar between 4~6 of height $\frac{\sqrt{7}}{2} = 3.5$ small squares or	M1	2.2a
	For a bar between 6~8 of height 1.5 small squares	A 1 C	1 11
	For a fully correct histogram with all 3 bars plotted correctly	A1ft (2)	1.1b
(c)	(8) _I		
(6)	Require $\int_{(1)}^{(8)} \frac{k}{x^2} dx = 112$	M1	3.4
	$= \left\lceil \frac{-k}{x} \right\rceil^8 = \left(-\frac{k}{8} \right) - \left(-\frac{k}{1} \right) [=112]$	M1	1.1b
	$-\left[\frac{1}{x}\right]_{1} - \left(-\frac{1}{8}\right) - \left(-\frac{1}{1}\right)\left[-\frac{1}{1}\right]_{2}$	1011	1.10
	i.e. $\left\lceil \frac{7}{8}k = 112 \Longrightarrow \right\rceil \qquad k = \underline{128}$		4 41
	i.e. $\left \frac{7}{8}k = 112 \Longrightarrow \right \qquad k = \underline{128}$	A1	1.1b
		(3)	
		(7 ma	rks)
	Notes	1: 1.05	7
(a)	M1 for deducing a correct fd scale (seen on graph or in text) may be imp	onea 25 <u>c</u>	<u>or</u> /
	if 25 or 7 found, then ignore their fd scale A1 for both 25 and 7		
	Till Tol both 25 tillt /		
(b)	Ignore their fd scale in part (b)		
	M1 for a correct bar over 4~6 follow through their "7" from their table		
	or for a correct bar over 6~8	. 1.1 \	
	A1ft for a fully correct histogram (all 3 bars correct height and correct vallow ft on their 4~6 bar	width)	
	anow it on their 4~0 bar		
(c)	1^{st} M1 for correct integral expression = 112 (condone missing dx and ig	nore limi	ts)
	or attempt to integrate ($x^{-2} \rightarrow x^{-1}$) and set area = 112 (ignore lim		*
	2 nd M1 for correct integration and some use of limits of 1 and 8 (condone		112)
	$\frac{7}{8}k = 112$ implies M1M1		
	A1 for 128		

(a)	(i) 0.153588 awrt <u>0.154</u>	B1	3.4
	(ii) $P(X \le 14) - P(X \le 11)$ with at least 1 from $P(X \le 14) = 0.97707$; $P(X \le 11) = 0.797603$	M1	2.1
	$= 0.17947 \text{ awrt } \underline{0.179}$	A1	1.1b
		(3)	
(b)	$H_0: p = 0.12$ $H_1: p < 0.12$	B1	2.5
	[$D = \text{no. of defective items in sample}$] $D \sim B(60, 0.12)$	M1	2.1
	$[P(D_{,,} 3)] = 0.06013$ awrt <u>0.060</u>	A1	1.1b
	or $[P(D_{,,} 2)] = \text{awrt } 0.0196 \text{ with reference to CR [so CR: } D_{,,} 2]$		
	$[0.06 > 5\%$ not significant, do not reject H_0]		
	<u>Insufficient</u> evidence that <u>proportion</u> of defective <u>items</u> has <u>decreased</u>	A1	2.2b
(c)	"0.06"	(4) B1ft	1.2
(C)	<u>0.00</u>	(1)	1.2
		(8 ma	rks)
() (0)	Notes		
(a)(i)	B1 for awrt 0.154		
(ii)	M1 for correct expression for $P(X \le 14) - P(X \le 11)$ [o.e.] with at least one correct probability substituted (2sf truncated or round	lad)	
	or correct calculation 0.97707 – 0.797603 (2sf truncated or round	,	
ALT			
	$= 0.09176 + 27C13(0.35)^{13}(0.65)^{14} = 0.05701 + 27C14(0.35)^{14}(0.65)^{13} = 0.03069$		
	with at least one correct probability calculation or value seen (2sf truncated or rounded)		
	A1 for awrt 0.179 allow 0.1795 correct answers scores 2 out of 2		
(b)			
	M1 for sight or correct use of B(60, 0.12) (implied by awrt 0.0601 or awrt 0.0405 or awrt 0.0196)		
	1^{st} A1 for final answer awrt 0.060 (allow 0.06 if $P(D_{*}, 3)$ is seen with B(6)	0, 0.12))	
	or for critical region approach awrt 0.0196 with statement of CR or reference to CR		
	NB: $\overline{P}(D_{*}, 2) = \text{awrt } 0.0196$ on its own scores A0 here as it is treated as a <i>p</i> -value but can score B1ft in part (c)		
	2 nd A1 (dep on M1A1 but independent of hypotheses) for a correct inference	ce in conte	ext.
	Must NOT reject H_0 (if stated) and mention underlined words o.e.		
	condone e.g. 'proportion of defective items is still 0.12/hasn't chan	ged'	
	allow e.g. 'no' for insufficient		
	allow proportion/probability/percentage but not number allow e.g. 'is less than 0.12' for decreased		
	2 nd A0 for contradictory statements		
	e.g. 'reject H ₀ so no decrease in proportion of defective items'		
SC	A two-tailed test may score maximum in (b) B0M1A1A1 but must be 2×the	•	to 3 sf
	to score in part (c). Correct ft is 0.120 or better (do not accept 0.12 for the S	C).	
(c)	B1ft for 0.06 or better allow as a percentage		
(-)	or ft their final (p-value) answer from part (b) to 1sf [provided it is a probability]		
	NB: using a critical region approach in (b) scores B0ft if they state their 0	CR	
	probability as the <i>p</i> -value		

Scheme

Marks

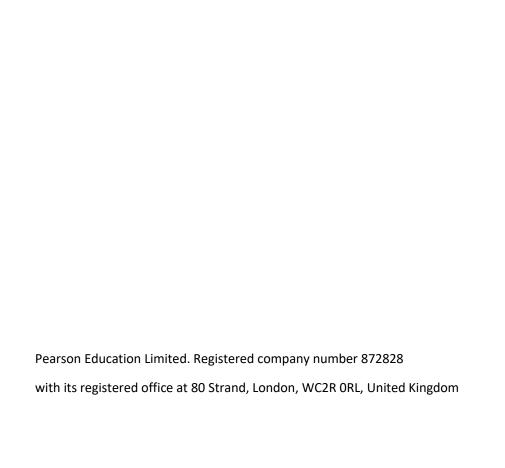
AO

Qu 4

Qu 5	Scheme	Marks	AO
(a)	$[2q = 0.3]$ $\left[q = \frac{1 - (0.5 + 0.2)}{2} \right]$ $[q =]$ 0.15	B1 (1)	1.1b
(b)	Realising require sequence: $\overline{7}$, $\overline{7}$, 7 may see $0.8 \times 0.8 \times 0.2$ o.e. $= \underline{0.128}$ *	M1 A1* (2)	3.4 1.1b
(c)	Possible values for S are: 1, 2, 3 or 4 only $[P(S = 1)] = 0.2$ and $[P(S = 2) = 0.8 \times 0.2 =] 0.16$ $P(S = 4) = 0.8^3 \times 0.2 + 0.8^4$ $[= 0.512]$	B1 M1	3.3 3.4
	$\underline{\text{or}} 1 - [P(S=1)' + P(S=2)' + 0.128]$	M1	3.4
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 (4)	1.1b
(d)	[=1-P(S=1=N)=1-0.2]= 0.8	B1 (1) (8 ma	1.1b
	Notes	(6 1112	11 KS)
(a)	B1 for $q = 0.15$ o.e.		
(b)	M1 for evidence that a correct sequence has been applied allow a clear list of all 9 possibilities e.g. (6,6,7), (6,8,7), (6,10,7), (8,6,7), (8,8,7), (8,10,7), (10,6,7), (10,8,7), (10,10,7)		
	or e.g. $0.5 \times 0.5 \times 0.2[=0.05] + 4(0.5 \times 0.15 \times 0.2[=0.015]) + 4(0.15 \times $	-v.vv 4 J])	
(c)	B1 for a correct sample space for S (e.g. first row of table) condone any if any other values for S are stated they must be attached to a probabi 1^{st} M1 for using the given model to find both values of $P(S = 1)$ and $P(S = 2^{nd})$ M1 for a correct method to find $P(S = 4)$ or use of $P(S = 4) = 1 - (P(S = 1) + P(S = 2) + 0.128)$	lity of 0	31

i.e. their P(S = 1) + P(S = 2) + P(S = 4) = 0.872

must be in terms of S for this mark to be scored


A1

B1

for 0.8

(**d**)

for a fully correct probability distribution, in table or listed separately

