

Please write clearly in blo	ock capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	clare this is my own work.	

AS **MATHEMATICS**

Paper 1

Thursday 16 May 2024 Afternoon Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use		
Question	Mark	
1		
3		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
TOTAL		

Section A

Answer all questions in the spaces provided.

1 It is given that $\tan \theta^{\circ} = k$, where k is a constant.

Find tan $(\theta + 180)^{\circ}$

Circle your answer.

[1 mark]

-k

 $-\frac{1}{k}$

 $\frac{1}{k}$

k

2 Curve C has equation $y = \frac{1}{(x-1)^2}$

State the equations of the asymptotes to curve C

Tick (✓) one box.

[1 mark]

$$x = 0$$
 and $y = 0$

$$x = 0$$
 and $y = 1$

$$x = 1$$
 and $y = 0$

$$x = 1$$
 and $y = 1$

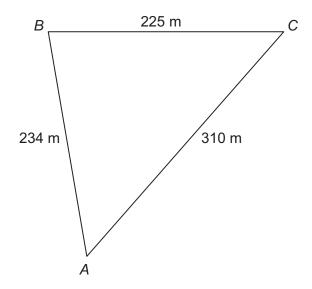
3	Express $\frac{\sqrt{3} + 3\sqrt{5}}{\sqrt{5} - \sqrt{3}}$ in the form $a + \sqrt{b}$, where a and b are integers.	
	Fully justify your answer.	[4 marks]

4 (a) (i)	i) By using a suitable trigonometric identity, show that the equation		
	$\sin \theta \tan \theta = 4 \cos \theta$		
	can be written as		
	$ an^2 heta = 4$	-,	
		[1 mark]	
4 (a) (ii)	Hence solve the equation		
	$\sin \theta \tan \theta = 4 \cos \theta$		
	where $0^{\circ} < \theta < 360^{\circ}$		
	Give your answers to the nearest degree.		
		[3 marks]	

4 (b)	Deduce all solutions of the equation	
	$\sin 3\alpha \tan 3\alpha = 4 \cos 3\alpha$	
	where $0^{\circ} < \alpha < 180^{\circ}$	
	Give your answers to the nearest degree.	[3 marks]

5	A student is looking for factors of the polynomial $f(x)$	
	They suggest that $(x-2)$ is a factor of $f(x)$	
	The method they use to check this suggestion is to calculate $\ f(-2)$ They correctly calculate that $\ f(-2)=0$	
	They conclude that their suggestion is correct.	
5 (a)	Make one comment about the student's method .	[1 mark]
5 (b)	Make two comments about the student's conclusion .	[2 marks]
	1	
	2	

6	Determine the set of values of \boldsymbol{x} which satisfy the inequality	
	$3x^2+3x>x+6$	
	Give your answer in exact form using set notation.	[4 marks]



7 A triangular field of grass, *ABC*, has boundaries with lengths as follows:

$$BC = 225 \text{ m}$$

$$AC = 310 \text{ m}$$

The field is shown in the diagram below.

7 (a) Find angle A

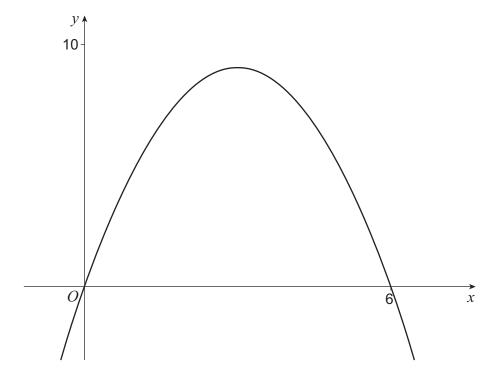
J			[2 marks]

7 (b)	Farmers calculate the number of sheep they can keep in a field, by allowing one sheep for every 1200 m ² of grass.			
	Find the maximum number of sheep which can be kept in the field ABC [3 marks]			
	Turn over for the next question			

8	It is given that $\ln x - \ln y = 3$	
	y C	
8 (a)	Express x in terms of y in a form not involving logarithms.	[3 marks]
8 (b)	Given also that	
0 (D)	Given also that	
. ()	x + y = 10	
		[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]
	x + y = 10	[3 marks]

9 A curve has equation y = f(x) where

$$f(x) = x (6 - x)$$


9 (a) Find f'(x)

[2 marks]

9 (b) The diagram below shows the graph of y = f(x)

On the same diagram sketch the gradient function for this curve, stating the coordinates of any points where the gradient function cuts the axes.

[3 marks]

It is given that	
$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+2)(2x-1)^2$	
and when $x = 6$, $y = 900$	
Find y in terms of x	
	[6 ma

11	It is given that for the continuous function $\ensuremath{\mathbf{g}}$	
	• $g'(1) = 0$	
	• $g'(4) = 0$	
	g''(x) = 2x - 5	
11 (a)	Determine the nature of each of the turning points of \boldsymbol{g}	
	Fully justify your answer.	[3 marks]
11 (b)	Find the set of values of x for which ${\bf g}$ is an increasing function.	[2 marks]

12	The monthly mean temperature of a city, T degrees Celsius, may be modelled by the equation
	$T = 15 + 8\sin(30m - 120)^{\circ}$
	where m is the month number, counting January = 1, February = 2, through to December = 12
12 (a)	Using this model, calculate the monthly mean temperature of the city for May, the fifth month.
	[2 marks]
12 (b)	Using this model, find the month with the highest mean temperature. [2 marks]
12 (c)	Climate change may affect the parameters, 8, 30, 120 and 15, used in this model.
12 (c) (i)	State, with a reason, which parameter would be increased because of an overall rise in temperatures.
	[1 mark]

12 (c) (ii)	State, with a reason, which parameter would be increased because of the occurrence
·- (~) (··)	of more extreme temperatures.
	[1 mark]
	END OF SECTION A
	Turn over for Section B

Section B

Answer all questions in the spaces provided.

A particle is moving in a straight line with constant acceleration a m s⁻²

The particle's velocity, $v \text{ m s}^{-1}$, varies with time, t seconds, so that

$$v = 3 - 4t$$

Deduce the value of a

Circle your answer.

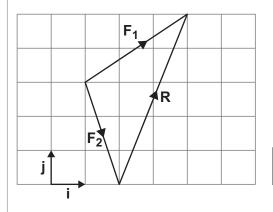
[1 mark]

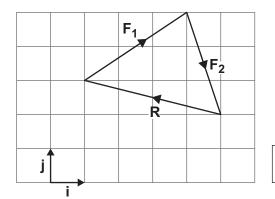
-4

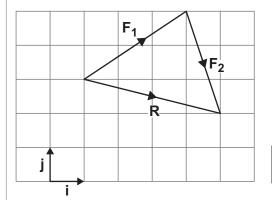
-1

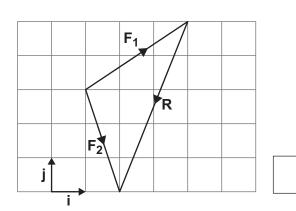
3

4

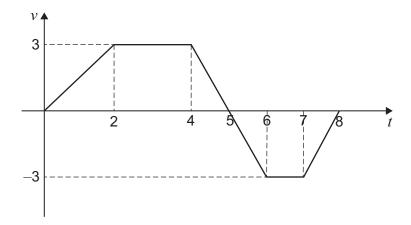

Two forces, $\mathbf{F_1} = 3\mathbf{i} + 2\mathbf{j}$ newtons and $\mathbf{F_2} = \mathbf{i} - 3\mathbf{j}$ newtons, are added together to find a resultant force, \mathbf{R} newtons.


This vector addition can be represented using a diagram.


Identify the diagram below which correctly represents this vector addition.


Tick (\checkmark) one box.

[1 mark]



Turn over for the next question

A graph indicating how the velocity, v m s⁻¹, of a particle changes with respect to time, t seconds, is shown below.

15 (a) Find the total distance travelled by the particle over the 8 second period shown.

[3 marks]

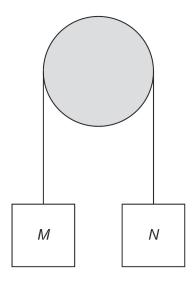
15 (b)	A student claims that	
	"The displacement of the particle is less than the distance travelled."	
	State the range of values of t for which this claim is true.	[1 mark]
	Turn over for the next question	

16	In this question use $g=$ 9.8 m s $^{-2}$
	A ball is launched vertically upwards from the Earth's surface with velocity $u \ \mathrm{m} \ \mathrm{s}^{-1}$
	The ball reaches a maximum height of 15 metres.
	You may assume that air resistance can be ignored.
	Find the value of \boldsymbol{u} [3 marks]

17	A particle moves in a straight line with acceleration a m s ⁻² , at time t seconds, where
	a = 10 - 6t
	The particle's velocity, $v \text{ m s}^{-1}$, and displacement, $r \text{ metres}$, are both initially zero.
	Show that $r = t^2(5-t)$
	Fully justify your answer. [4 marks]

18	It is given that two points A and B have position vectors	
	$\overrightarrow{OA} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$ metres and $\overrightarrow{OB} = \begin{bmatrix} 13 \\ 5 \end{bmatrix}$ metres.	
18 (a)	Show that the distance from A to B is 10 metres.	[3 marks]

18 (b)	A constant resultant force, of magnitude $\it R$ newtons, acts on a particle so that it moves in a straight line passing through the same two points $\it A$ and $\it B$
	At A , the speed of the particle is 3 m s ⁻¹ in the direction from A to B
	The particle takes 2 seconds to travel from A to B
	The mass of the particle is 150 grams.
	Find the value of R [3 marks]



Two objects, *M* and *N*, are connected by a light inextensible string that passes over a smooth peg.

M has a mass of 0.6 kilograms.

N has a mass of 0.5 kilograms.

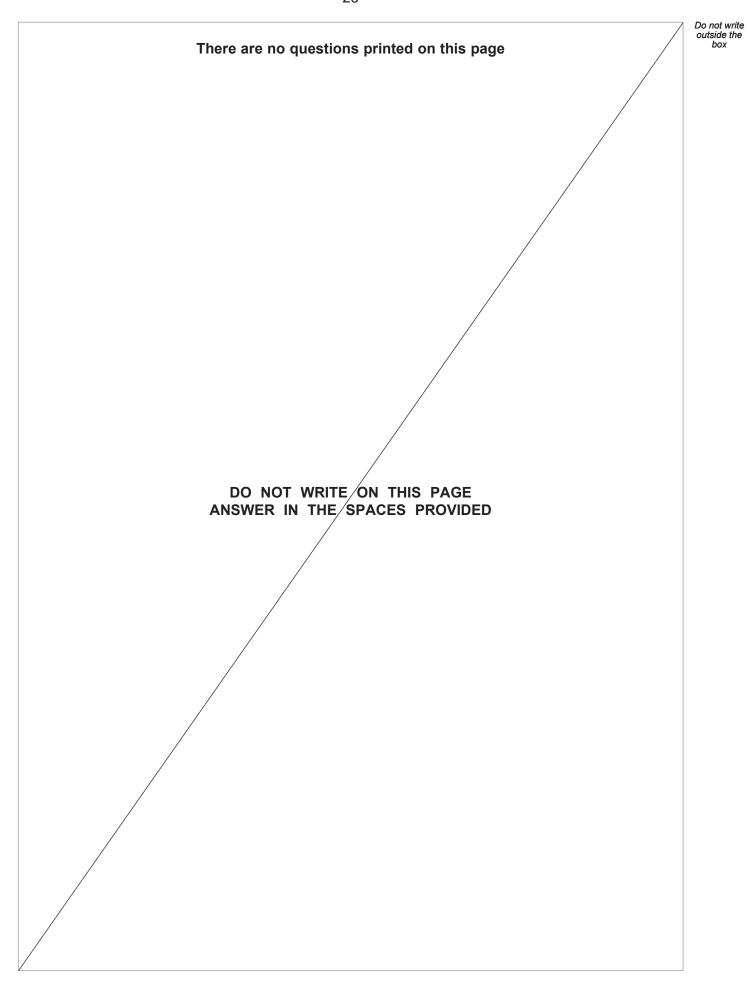
M and *N* are initially held at rest, with the string taut, as shown in the diagram below.

M and *N* are released at the same instant and begin to move vertically.

You may assume that air resistance can be ignored.

19 (a) It is given that *M* and *N* move with acceleration a m s⁻²

By forming two equations of motion show that


$$a = \frac{1}{11}g$$

[5 marks]

The speed of N, 0.5 seconds after its release, is $\frac{g}{k}$ m s ⁻¹ where k is a constant.
Find the value of k
State one assumption that must be made for the answer in part (b) to be valid. [1 m
END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

